4.35. kink/container/ORDERED_SET¶
4.35.1. type ordered_set¶
`ordered_set` is a subtype of `set` type which supports ordering of elements.
The ordering is defined by each `ordered_set` implementation.
See kink/container/SET for `set` type.
The following builtin mods provide ordered_set implementations:
• kink/container/FLAT_SET
• kink/container/TREE_SET
4.35.1.1. S.each($consume_elem)¶
`each` calls $consume_elem with each element of the the set, in the ordering of the set.
This method suffices the contract of Set.each.
4.35.1.2. S.iter¶
`iter` returns an iter which iterates over all the elements in the ordering of the set.
This method suffices the contract of Set.iter.
4.35.1.3. S.fold(Init $combine)¶
`fold` accumulates elements of the set seeded by `Init`.
If the elements of the set is `E1`, `E2`, ,,, `En_1`, `En`, in the ordering of the set, this fun returns combine(combine(,,,combine(combine(Init E1) E2),,, En_1) En).
This method suffices the contract of Set.fold.
4.35.1.4. S.reduce($combine)¶
`reduce` accumulates elements of the set mutually, then returns a maybe tuple.
If the set has elements `E1`, `E2`, `E3`, ,,, `En_1`, `En`, in the ordering of the set, this method returns [combine(combine(,,,combine(combine(E1 E2) E3),,, En_1) En)].
If the set has a single element `E`, this method returns [E].
If the set is empty, this method returns [].
This method suffices the contract of Set.reduce.
4.35.1.5. S.front¶
`front` returns the element which comes first in the ordering of the set.
Precondition:
• The set must not be empty
Example:
:TREE_SET.require_from('kink/container/')
:Set <- TREE_SET.of('foo' 'bar' 'baz')
stdout.print_line(Set.front.repr) # => "bar"
4.35.1.6. S.back¶
`back` returns the element which comes last in the ordering of the set.
Precondition:
• The set must not be empty
Example:
:TREE_SET.require_from('kink/container/')
:Set <- TREE_SET.of('foo' 'bar' 'baz')
stdout.print_line(Set.back.repr) # => "foo"
4.35.1.7. S.pop_front¶
`pop` pops the element which comes first in the ordering of the set.
Precondition:
• The set must not be empty.
Example:
:FLAT_SET.require_from('kink/container/')
:Set <- FLAT_SET.of('foo' 'bar' 'baz')
:Front <- Set.pop_front
stdout.print_line(Front.repr) # => "bar"
stdout.print_line(Set.repr) # => Flat_set("baz" "foo")
4.35.1.8. S.pop_back¶
`pop_back` pops the element which comes last in the ordering of the set.
Precondition:
• The set must not be empty.
Example:
:FLAT_SET.require_from('kink/container/')
:Set <- FLAT_SET.of('foo' 'bar' 'baz')
:Back <- Set.pop_back
stdout.print_line(Back.repr) # => "foo"
stdout.print_line(Set.repr) # => Flat_set("bar" "baz")
4.35.1.9. S.iter_from(Min)¶
`iter_from` returns an iter which iterates over elements equivalent to or bigger than `Min` in the ordering of the set.
Precondition:
• Ordering between `Min` and elements of the set must be able to be tested.
Example:
:TREE_SET.require_from('kink/container/')
:Set <- TREE_SET.of('foo' 'bar' 'baz' 'qux')
Set.iter_from('baz').each{(:E) stdout.print_line(E.repr) }
# Output:
# "baz"
# "foo"
# "qux"
Set.iter_from('bazzz').each{(:E) stdout.print_line(E.repr) }
# Output:
# "foo"
# "qux"
Set.iter_from('foo').each{(:E) stdout.print_line(E.repr) }
# Output:
# "foo"
# "qux"
Set.iter_from('foooo').each{(:E) stdout.print_line(E.repr) }
# Output:
# "qux"
4.35.2. ORDERED_SET.is?(Val)¶
`is?` returns whether `Val` is an ordered_set.